
An AHP-Based Evaluation of Real-Time Stream Processing
Technologies in IoT

Patrick Killeen1 and Alireza Parvizimosaed2

Abstract—These days, Internet of Things (IoT) tech-
nologies gather high volumes of data from millions
of Internet connected devices and sensors, trying to
process data streams with the lowest latency possible.
The primary applications of IoT are smart health, smart
city, smart farming, smart homes, smart grid, and
smart transportation. Some of these applications have
been implemented using various IoT technologies and
frameworks without necessarily considering the major
requirements for developing real-time stream processing
systems. Even though each application satisfy some of
the requirements of IoT, their requirements are aligned
to specific categories. In this paper, we propose critical
requirements for stream processing in IoT, and evaluate
Database Management System, Rule Engine, and Stream
Processing Engine technologies with Analytical Hierar-
chy Process(AHP) algorithm based on the requirements.

I. INTRODUCTION

A. What is IoT

When you think of a smart house and the Inter-
net of Things (IoT), what do you imagine? Many
people would imagine IoT as simply being able to
start their microwave using their smartphones. IoT
is much more than that. Some predict that by year
2020, there will be more than 10 billion devices
(or things) connected to the Internet [1][2]. The pri-
mary applications of IoT are smart health, smart city,
smart farming, smart homes, smart grid, and smart
transportation[1][3][4][5][6][7][8]. A thing is an Inter-
net connected device with embedded sensors and/or
actuators [3][4][9], that are used for sensing the en-
vironment around the thing to possibly act and/or be
controlled [2][5][7][10]. IoT involves real-time data
analytics, processing and mining [5].

*This work was not supported by any organization
1Patrick Killeen is with Faculty of Computer Science, University

of Ottawa, Ottawa, Canada pkill013@uottawa.ca
2Alireza Parvizimosaed is with Faculty of Electrical Engineering

and Computer Science, University of Ottawa, Ottawa, Canada
aparv007@uottawa.ca

B. Big Data and Big Data Streams

The current cloud architectures will have trouble
dealing with all these devices and their data [1][5].
That leads us to the notion of Big Data, which is high
volume, veracity, velocity, value, and variety data [10].
In the context of IoT ’Big’ refers to the massive number
of data sources, sensors, and other smart devices [1].
This large number of data streams (and devices) are
heterogeneous [2][5][10]. Some streams may be sent
over LTE and others over Wi-Fi. The different formats
(or structures) of data sources render the problem not
trivial from a scalability point of view [2][5]. [10] refers
to such streams as Big Streams, that is, streams with
many data sources, and real-time/predictable latency
requirements as well as stream output managers (what
consumer receives what stream).

C. Requirements

With IoT quickly evolving, if the future scalability
issue predictions are correct, requirements for IoT
systems need to be defined to make IoT system imple-
mentation and design feasible. Since IoT is a type of
real-time stream processing system, to begin analyzing
the requirements for this type of system, it is necessary
to understand the requirements of the more general real-
time stream processing systems. It is also important to
understand what tools and technologies can be used
to best meet these stream processing requirements.
This paper analyzes real-time stream processing system
requirements and attempts to adjust(add, remove, or
modify) them so that they apply to IoT systems.

II. BACKGROUND

This section will focus on related work to IoT
systems and their requirements. The core literature of
this paper is founded on [11], which discusses in detail
what a real-time stream processing system requires, as
well as comparing which tool and how effectively the
tool meets the requirements.



A. Eight Stream Processing Requirements
This section explains the primary requirements that

should be considered while developing real-time stream
processing systems. The below requirements were de-
fined by [11].

• Keep the Data Moving
Systems must be able to process streams of data
without storing data, since storing data creates
latency. If persistence is necessary, the system
must only store data inside its process space (using
an embedded DBMS for example)[11].

• Execute Queries on Streams of Data
Since data flows into real-time systems continu-
ously, SQL queries cannot be performed on these
data streams, because SQL queries can only be
run on tables of finite size. Therefore, an al-
ternative mechanism such as StreamSQL is re-
quired, which is a type of SQL that is designed
to perform queries on streams of data[11]. The
mechanism must provide extendable operators. On
that note, function and parameter replacement are
two methods which modify a query operation at
runtime[12].

• Handling Delayed, Missed and Out-of-Order
Data
The system generates valid results of data pro-
cessing whenever it processes sequences of data
in some correct order. If packets arrive late, the
system must not wait infinitely, which can be
achieved by ignoring delayed data and continu-
ing to process the next available data, and by
supporting timeouts. An alternative consists of
keeping an open timestamp window of delayed
messages for an extra period of time[11]. Another
option is dynamic revision of query results, which
replaces predefined messages with delayed mes-
sages and revises query results to correct incon-
sistent data[12].

• Create Predictable Data
The system must forecast repeatable results of pro-
cessing time-series messages. In fact, the system
must predict missed parts of data and continue data
processing using the predictions[11].

• Merging Stored and Streaming Data
Some real-time stream processing systems require
the integration of stored data with live data[11][5].
For instance, fraud detection applications must
analyze stored and live credit card transaction data.
To avoid latency, the system should fetch data
from embedded databases (SQLite for example)

and process it with a uniform language[11].
• Ensure Data Safety and Availability
To reach high availability, the system can either
make a hardware backup of data or recover data
from log files. Both methods create latency. A
solution to this is Tandem-style hot backup, which
keeps a secondary system synchronized with the
primary system. Upon primary system failure the
secondary system continues data processing until
the primary system successfully restarts[11]. An-
other solution is rebuilding lost data by tracking
a history of operations, which are then reapplied
to recompute the lost data[13]. Precise, Rollback,
and Gap recovery are also utilized to ensure avail-
ability and data safety[14].

• Distribute and Scale Applications Automati-
cally
Multi-threading and process distribution are two
general methods for achieving high performance
and low latency[11]. Processing data in different
levels of granularity is an approach for ensur-
ing scalability. That is, this method organizes
multiple levels of granularity ranged from sen-
sors to servers and processes data in each level
separately[12]. Storing data and their structure
in memory also has a positive effect on perfor-
mance. Another method is clustering data pro-
cessing nodes such that the data be processed in
multiple clusters simultaneously[15].

• Real-time Processing and Responding
The system must choose optimum execution
paths for processing high volume data with low
latency[11].

B. Technologies of IoT
In general, an IoT architecture can be separated into

5 layers (see below) and IoT technologies are involved
in at least one of these layers.

• Sensing Layer: Things with sensors and actuators
sense the environment around them for desired
phenomenon[3][6][4].

• Network Layer: The heterogeneous data streams
of various devices are connected to the Internet
via various means (e.g., LTE and Wi-fi)[3][4].

• Storage Layer: A persistence mechanism pro-
cesses and stores the huge number of data
streams[3][6].

• Learning Layer: Live and stored data streams are
analyzed to learn something about the data and the
environment[3][6].



• Application Layer: The tool or service uses the
information gathered and learned from the various
data streams[3][6][4].

MQTT and CoAP, Gateway and Fog Computing are
three IoT technologies which involve some of the
aforementioned layers.
Gateway

• Sensing Layer: Gateways are used to handle the
sensor data streams coming from various things
(or devices). Their role is to manage the data
stream heterogeneity of the various streams [4].

• Network Layer: Gateways connect smaller sen-
sor/device networks (a Zigbee network for exam-
ple [1]) to the Internet. It provides an abstraction
layer, an API, over the sensor streams, to provide
higher layers access to the sensors without needing
knowledge of the underlying sensor communica-
tion protocols [4].

Fog Computing
• Network Layer: Fog computing is a platform
with hierarchical distributed architecture which
processes some parts of data in the edge of the
network, in order to process high volume data with
low latency[1]. The Fog brings IoT devices closer
to the cloud to help meet IoT requirements the
cloud doesn’t meet[5].

• Storage Layer: The Fog’s hierarchical struc-
ture also involves resource allocation to sup-
port both of the following processes: machine-
to-machine(M2M), which may be real-time, and
human-to-machine (H2M), which isn’t real-time.
[1].

• Learning Layer: In addition, the Fog supports
many different data sources (a dimension of Big
Data in IoT), ideal for real-time big data analytics.
Fog computing middle-ware classifies data into
separate groups and processes them in different
levels from network edge to cloud based on their
priorities[1].

• Application Layer: Provides high level access
APIs on data sources whereby things can connect
to Fog platform and feed their streams of data to
the platform[1]. It is able to utilize the Policy-
based service orchestration approach, which dis-
tributes service requests among Fog services ac-
cording to the predefined policy constraints. Even
if the platform does not find an active instance
of the desired service, it creates a new instance.
Consequently, whenever constraints are defined

perfectly, data will be processed by means of free
services [1].

MQTT and CoAp
• Network Layer: These OSI Application Layer
protocols are based on subscribe and publish
model and are resistant to failure[1]. Both MQTT
and CoAp are used extensively in IoT systems,
meeting the availability (by nature of publish-
subscribe model), expressiveness, and resource
requirements of IoT systems[2].

III. ANALYZE THE EIGHT REQUIREMENTS
The following section will present our results. We

investigate how meaningful it would be to include each
of the requirements mentioned above into IoT system
requirements. We found results by analyzing the tradi-
tional real-time stream processing system requirements
(see section II-A) when applied to IoT systems. There
are some of the eight requirements we argue that don’t
make sense, are missing, or need modification when
focusing on IoT.

A. Modified Rules
• Keep Data Moving: Most IoT systems suppose
that streams of data are flowing instead of storing
the steams in a repository[16].

• Execute Queries on Streams of Data: There are
many possibilities for querying IoT streams. A
Database Stream Management System (DSMS),
which is an extension of DBMS, processes streams
of data instead of executing a query on stored data.
Recently, some SQL-based languages and plat-
forms such as Continuous Query Language, Event
processing language, IBM Infosphere Stream,
SAP Sybase Event Stream Processor, and SQL-
stream Blaze have been developed to support
data stream processing. Complex Event Processing
(CEP), which is another option, monitors incom-
ing events that satisfy specific conditions[16].

• Integrate Stored and Streaming Data: Some
IoT systems take advantage of machine learning
algorithms such as Principal Component Analysis
and feature selection to reduce the dimension of
data. Other systems apply supervised machine
learning algorithms to streams of data, and create
training models. The purpose of these algorithms
is minimizing the error between real and esti-
mated data[16][17][18]. For example, smart city
applications should process events in real-time and
explore useful information in order to recognize



specific types of data. To this aim, stream rea-
soning methods are appropriate candidates thanks
to reasoning based on background knowledge and
streaming queries[19].
Fog computing can arguably meet this requirement
for integrating live and stored data (see storage
layer section II-B).

• Partition and Scale Applications Automati-
cally: Since many devices may connect to IoT
platforms, the platforms must lead data to the
most suitable services [1]. To this aim, Fog com-
puting and its Policy-based service orchestration
approach can satisfy this requirement (see applica-
tion layer section II-B). Furthermore, since the Fog
network is dynamic and nodes may move around,
simply partitioning data to a location that a user
accesses frequently may not be sufficient. Nodes
and users may be dynamic, which means static
partitioning isn’t sufficient. Dynamic partitioning
based on the service requester’s (user’s) location
will be more efficient. That is, being able to
predict the next location of a service requester will
allow the data partitioning to be optimized and
accessible by the user by sending the desired data
to the user’s future location where the request will
take place [20]. The Fog is ideal for this, since it
can perform machine learning (see learning layer
section II-B).
Information Flow Of Things (IFOT) discovers
tags of flows by machine learning algorithms, and
assign tags to data flows. Since metadata of data
flows are available, IFOT nodes can efficiently
search and process data of flows. In addition, it
reduces granularity of data due to using dynamic
granularity adjustment function[16].

• Process and Respond Instantaneously: To
achieve high performance, Fog computing (see
section II-B) processes data in the edge of net-
work. In addition, some Fog computing platforms
run a software agent on the connected devices
to process data before inserting the data into
the system[1]. IFOT also analyzes and aggregates
data flows near data sources instead of sending
raw data to the cloud and storing them on the
cloud[16].

• Ensure Data Safety and Availability: Avail-
ability should be handled differently compared to
the cloud paradigm. To increase availability, data
locality should be used. That is, instead of sending
all raw data streams over the network, which may

create bottlenecks[9], the streams should only be
sent over their local network (Personal Area Net-
work (e.g., PAN and LAN), and aggregated before
being sent to the cloud[1]. In other words, avail-
ability in an IoT system requires edge analytics for
sending stream aggregations[20]. Therefore, the
following IoT technologies meet this availability
requirement (see section II-B): the Fog, gateways,
and MQTT and CoAp.
We propose a second modification to this re-
quirement. Standard real-time stream process-
ing systems meet availability by using machine
cloning, offloading, and duplication[11][20] (see
data safety and availability section II-A). How-
ever, in IoT things are more dynamic. For exam-
ple, Fog networks are more dynamic, which com-
plicates duplication and renders Fog node duplica-
tion a more difficult process to achieve [20]. Thus,
machine cloning, offloading, and duplication may
not be a suitable solution for this requirement for
IoT systems.

B. Added Rules

• Support Diverse Set of Distributed Applica-
tions: Since IoT systems connect a lot of de-
vices and applications together[1][3][2][5], they
must provide a mechanism for supporting various
devices and applications[1]. There are three cate-
gories of applications mentioned by [5], namely:
real-time, data analytics, and device interaction.
From the perspective of the device interaction
category, Fog computing meets this category’s re-
quirement. It does so by providing the APIs which
allow various heterogeneous devices to interact
with each other[6](see application layer section II-
B). To some extent, the gateways also meet this
category’s requirement by interacting with sensors
and the Internet (see section II-B).
Onto the data analytics category, smart city appli-
cations for example, must apply some simplifica-
tion functions like aggregation and summarization
of data to efficiently analyze data[19]. There is
so much data that simply processing all the raw
streams would not be feasible. The Fog, gateways,
and MQTT and CoAp meet these requirements
(see modified data safety and availability section
III-A). Furthermore, streaming applications using
IoT systems also may visualize analytical data
as part of data flow instead of generating visual
charts in clients’ browsers[17].



• Resource Management: Fog computing (see sec-
tion II-B) meets this requirement, since the Fog
computing platform supports virtualization of re-
sources, networks, and computing. After virtual-
ization, multiple operating systems and service
containers can be executed on a common phys-
ical machine to improve resource management.
It can perform its policy-based orchestration and
provisioning over the virtualization layer[1]. For
example, a smart city may have a software-defined
network and the nodes will compete for resources,
requiring a network manager to dynamically self
optimize the network resources[2].

• Geographical Distribution: IoT systems must
be able to handle many distributed sets/networks
of devices around the globe, instead of using a
centralized solution such as the cloud[1][8][20].
Distributing flows of data among remote IFOT
nodes is an issue that is solved by searching
multiple paths of data to a distinct target, measur-
ing transformation parameters, and then setting up
multiple paths to the target[16]. We argue MQTT
and CoAp meets this requirement by connecting
devices together over the Internet (see section II-
B).

• Connecting Networks of Sensors: In
IoT systems, there are networks of sensor
networks[6][7][8]. Therefore, the sensor networks
must be connected together to act in coordination
and achieve a common task[7][8]. The gateways
arguably can achieve this task, since they have
their own local network of sensors, and the
gateways can interact with each other using
their own virtual networks over the Internet (see
section II-B).

• Data Multi-Tenancy: The data gathered (sensed
and deduced) on a thing should be only accessible
by the proper tenant. That is, the different types
of data should be protected and only accessed by
users with the right privileges. This is required
since there are legal and privacy requirement on
data ownership[3]. For example, a hospital patient
may own his or her vital sign data, but doesn’t
own the vital sign device’s metadata, such as the
heart rate monitoring frequency. The gateways can
achieve this since they are near the data source and
thus can manage these privileges before the data
are sent over the Internet (see section II-B).

C. Removal of Requirements

• Handling Delayed, Missed and Out-of-Order
Data: The things that receive streams of data
from sensors don’t need to handle missing or
out-of-order data. The data elements may not
necessarily have a timestamp, since the sensors
can simply output the raw sensor value they have
read from the environment. The thing itself (gate-
way for example) is responsible for creating the
timestamp[21]. Therefore, this requirement does
not matter for gateways because sensors (data
sources) and gateways are physically located near
each other instead of being geographically dis-
persed, and consequently gateways receive data
from sensors with correct sequences. In addition,
since sensors are constantly generating data, gate-
ways cannot wait for missed data. In general,
the requirement for handling out-of-order data or
missing data is important to higher-layer nodes in
the IoT architecture, but not necessarily important
to sensing layer nodes.

IV. TECHNOLOGIES SUPPORTING IoT STREAM
PROCESSING

• Rule Engine(RE): As Fig.1 illustrates, a RE is
an active system that processes data whenever
data enters the engine. A RE has a collection
of rules, each rule being a condition-action pair.
When data comes into the engine, it is compared
to many conditions. If a condition is triggered, its
corresponding action is fired. A RE often stores
temporary data in memory instead of a repository.
Hence, its capacity of storing data is limited[11].

Fig. 1: Basic Architecture of RE[11]

• Stream Processing Engine(SPE): A SPE is also
an active system that performs SQL-style queries
on streams of data. Fig.4 shows the basic ar-
chitecture of a SPE. Whenever data enters into
the engine, it processes data without waiting for
external requests. Similar to a RE, a SPE is
designed for processing flows of data instead of



processing stored data. However, a SPE can store
data in an embedded database which isn’t straight
forward for a RE. In addition, a SPE takes ad-
vantage of timestamps and stream-oriented oper-
ators like merging streams, timeouts, and floating
windows[11].

Fig. 2: Basic Architecture of SPE[11]

• Database Management System(DBMS): A
DBMS is a passive technology that stores data in a
permanent repository and executes SQL queries on
the repository’s fixed-size tables. In other words,
if data is entered into a DBMS, it must be writ-
ten to the disk before a DBMS processes the
data. As Fig.3 shows, its processing will start
whenever an external request arrives, for example
an application’s query, which triggers the DBMS
to process data. Furthermore, a DBMS does not
support timeouts, timestamps, or stream-oriented
operators[11].

Fig. 3: Basic Architecture of DBMS[11]

V. EVALUATION

To evaluate the aforementioned technologies (see
section IV) against the IoT requirements we compiled
(see section III), we use Analytic Hierarchy Process
(AHP) method. AHP is a multi-criteria decision making
method which organizes evaluation factors and alter-
native decisions in a hierarchical structure, and then
compares pair decisions regarding factors[18]. Fig.4
depicts AHP hierarchy of IoT requirements and the
three technologies: SPE, RE, and DBMS. We rename

the requirements (see below) to simplify the rest of this
section when referencing them.
R1-Keep Data Moving; R2-Execute Queries on

Streams of Data; R3-Integrate Stored and Streaming
Data; R4-Partition and Scale Applications Automati-
cally; R5-Process and Respond Instantaneously; R6-
Ensure Data Safety and Availability; R7-Support Di-
verse Set of Distributed Applications; R8-Resource
Management; R9-Geographical Distribution; R10-
Connecting Networks of Sensors; R11-Data Multi-
Tenancy.
We also classify R1, R2 and R3 in Stream Pro-

cessing, and classify R4 and R9 in Distributed Man-
agement. We suppose that the importance of a source
factor in comparison with a target factor is a value of -
Strong(-S), -Moderate(-M), Equal(E), +Moderate(+M),
+Strong(+S) which shows the importance of a source
factor against a target factor. Their importance order
is -S, -M, E, +M, +S from least important to highest
one. We provided a voting meeting with experts, and
assigned average values of each factor, which were
proposed by voters, to the factor. Then, we created
comparison matrices of requirements and technologies
to sort their importance.

Fig. 4: AHP hierarchy of IoT requirements and three
technologies

A. Comparison Matrices of Technologies Regarding
Requirements
In this part, we evaluate pair technologies regarding

per requirements. Tables I, II and III show the result of
the evaluation. Since three technologies do not have an
effect on R7, R8 and R10, we ignore these requirements
in the evaluation.

B. Comparison of Requirements
In the next step, the importance of requirements

are compared against each other. In other words, R1,



TABLE I: Evaluation of scenarios 1 through 4

Pair Tech. Value Reason

Scenario R1

SPE VS RE E Both support stream of data.

SPE VS DBMS +S DBMS is a passive system and
SQL queries perform on stored
data whereas SPE is active and
processes stream of data without
storing.

RE VS DBMS +S DBMS is a passive system and
SQLs perform on stored data
whereas RE is active and processes
stream of data without storing.

Scenario R2

SPE VS RE E RE compares incoming data with
rules, and SPE executes stream-
oriented queries on flow of data

SPE VS DBMS +S DBMS executes SQL queries while
SQL is performed on stored data.RE VS DBMS +S

Scenario R3

SPE VS RE +S SPE has access to both stored and
streaming data whereas RE does
not store and fetch data from per-
manent database.

SPE VS DBMS +M DSMS, which is an extension of
DBMS, can support data streaming
but its capability is lower than SPE.

RE VS DBMS -M DSMS can integrate both stream-
ing and stored data whereas RE
does not have database.

Scenario R4

SPE VS RE +M Although RE can allocate flow
of data to services well, it does
not have any database for ma-
chine learning, and then it needs
a third party application to update
rules dynamically based on his-
torical data. In contrast, SPE has
a storage which can update rules
more easily.

SPE VS DBMS +S Although DBMS can partition data
statically, SQL commands cannot
classify data dynamically for mak-
ing tags.

RE VS DBMS +M Even though RE does not have
storage, it can support tagging but
DBMS does not handle classifica-
tion of data as easily.

TABLE II: Evaluation of scenarios 5 through 10

Pair Tech. Value Reason

Scenario R5

SPE VS RE E Although SPE processes data with
more latency than RE due to check-
ing windows, timestamps and re-
ferring to database, it can reduce
latency by aggregating and analyz-
ing data in the edge of network.

SPE VS DBMS +S DBMS has to refer to disks per
query while SPE and RE do not
necessarily need accesses to disks.RE VS DBMS +S

Scenario R6

SPE VS RE +S SPE can aggregate and analyze
data on the edge but RE just has
a temporary memory and does not
propose any mechanism for crash
recovery.

SPE VS DBMS +M SPE avoids of bottleneck thanks to
using aggregation whereas DBMS
does not support it. However,
DBMS can replicate data in the
backup database.

RE VS DBMS -M RE does not support any recovery
methods while DBMS at least pro-
poses replication.

Scenario R7

SPE VS RE E Supporting diversity of devices
does not related to these technolo-
gies.

SPE VS DBMS E

RE VS DBMS E

Scenario R8

SPE VS RE E Virtualization and resource man-
agement do not related to these
technologies.

SPE VS DBMS E

RE VS DBMS E

Scenario R9

SPE VS RE E Distributed databases fragment
data among remote sites and look
for optimum integration queries
whereas RE and SPE do not offer
distribution mechanisms.

SPE VS DBMS -S

RE VS DBMS -S

Scenario R10

SPE VS RE E Connection of sensor networks
does not relate to these technolo-
gies.

SPE VS DBMS E

RE VS DBMS E



TABLE III: Evaluation of scenario 11

Pair Tech. Value Reason

Scenario R11

SPE VS RE +S DBMS intrinsically guarantees pri-
vacy. SPE also guarantees it due
to using embedded DBMS whereas
RE just distributes data without
checking privacy.

SPE VS DBMS E

RE VS DBMS -S

TABLE IV: Comparison of requirements based on (a)
SP, (b) IoT Systems, (c) DM

(a) SP

R1 R2 R3 R5

R1 E +S +M

R2 +S +M

R3 -S

R5

(b) IoT Systems

R6 R11 SP DM

R6 +M -S -M

R11 -S -S

SP +M

DM

(c) DM

R4 R9

R4 +S

R9

R2, R3 and R5 are compared together against ca-
pability of processing data streams. R4 and R9 are
compared against capability of supporting distributed
management. R6 and R11, Stream Processing(SP) and
Distributed Management(DM) are compared together
against their importance in IoT systems. Table IV
summarizes the aforementioned comparisons.
After analyzing the mentioned technologies with

AHP, the results indicate that the SPE is the most
appropriate choice for an IoT system, since it can
support the most significant requirements as a whole.
The second alternative is the RE. As Fig.5 shows, SPE,
RE, and DBMS satisfy primary requirements by 50.1%,
33.8% and 16.1% respectively. In addition, the picture
illustrates the effect of SP, DM, R11 and R6 on the
final results. Since overall inconsistency is 0.05, there
are few inconsistencies among values of comparison
matrices. Comparison between these results and results
mentioned in [11] suggests that using SPE satisfies
stream processing requirements in both gateway level
and application level.

Fig. 5: Analysis of Impact and performance sensitivity
of SPE, RE and DBMS

VI. CONCLUSION
As technologies such as sensors and computing

power become cheaper and smaller, it makes IoT
possible and hence the accelerated rate at which IoT
is evolving. IoT is still a new paradigm and it isn’t
fully understood yet. The infrastructure we currently
have isn’t ready for the full transition to IoT. The
cloud isn’t going anywhere, but may be tightly coupled
with IoT systems. The requirements for such systems
must therefore be defined to help ease the transition
and understanding from the cloud paradigm to the IoT.
There are quite a few technologies that exist which
help meet the requirements for IoT systems, but their
use depends on the problem at hand. For example,
smart farming is arguably much more static by nature
than smart transportation. Thus, some IoT problems
may have different requirements, but they will all have
some in common. Upon understanding what technology
performs best in any given IoT situation, it will help
when making informed decisions when designing and
implementing IoT solutions.
In this paper, we analyzed eight requirements of pro-
cessing high volume data stream with low latency in
the scope of IoT. We added, removed and modified
some items to the aforementioned requirements, and
then evaluated three primary IoT technologies includ-
ing Stream Processing Engine, Rule Engine and Data
Base Management System by an AHP method. The
result represents that Stream Processing Engine satis-
fies stream processing requirements of IoT better than
the other two technologies. Future work for this paper
would be to adjust the requirements and technologies



as IoT evolves, since IoT is in its infant-stage. There
may be new technologies that out-class the technologies
mentioned in this paper, or new requirements that arise
as IoT grows.

References

[1] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Big data
and internet of things: A roadmap for smart environments,”
Studies in Computational Intelligence, vol. 546, pp. 169–186,
2014.

[2] M. S. Obaidat and P. Nicopolitidis, Smart cities and homes:
Key enabling technologies. Morgan Kaufmann, 2016.

[3] T. Chou, Precision - Principles, Practices and
Solutions for the Internet of Things:. McGraw
Hill Education, 2017. [Online]. Available:
https://books.google.ca/books?id=OVpHDwAAQBAJ

[4] S. K. Datta, C. Bonnet, and N. Nikaein, “An iot gateway cen-
tric architecture to provide novel m2m services,” in Internet
of Things (WF-IoT), 2014 IEEE World Forum on. IEEE,
2014, pp. 514–519.

[5] M. Díaz, C. Martín, and B. Rubio, “State-of-the-art, chal-
lenges, and open issues in the integration of internet of things
and cloud computing,” Journal of Network and Computer
Applications, vol. 67, pp. 99–117, 2016.

[6] H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-
Vladicescu, “Reliability in the utility computing era: Towards
reliable fog computing,” in Systems, Signals and Image Pro-
cessing (IWSSIP), 2013 20th International Conference on.
IEEE, 2013, pp. 43–46.

[7] C. Fiandrino, F. Anjomshoa, B. Kantarci, D. Kliazovich,
P. Bouvry, and J. N. Matthews, “Sociability-driven frame-
work for data acquisition in mobile crowdsensing over fog
computing platforms for smart cities,” IEEE Transactions on
Sustainable Computing, vol. 2, no. 4, pp. 345–358, 2017.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog com-
puting and its role in the internet of things,” in Proceedings
of the first edition of the MCC workshop on Mobile cloud
computing. ACM, 2012, pp. 13–16.

[9] L. M. Vaquero and L. Rodero-Merino, “Finding your way
in the fog: Towards a comprehensive definition of fog com-
puting,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 5, pp. 27–32, 2014.

[10] L. Belli, S. Cirani, G. Ferrari, L. Melegari, and M. Picone,
“A graph-based cloud architecture for big stream real-time
applications in the internet of things,” in European Conference
on Service-Oriented and Cloud Computing. Springer, 2014,
pp. 91–105.

[11] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 require-
ments of real-time stream processing,” ACM Sigmod Record,
vol. 34, no. 4, pp. 42–47, 2005.

[12] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina et al., “The design of the borealis stream
processing engine.” in Cidr, vol. 5, no. 2005, 2005, pp. 277–
289.

[13] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Dis-
cretized streams: An efficient and fault-tolerant model for
stream processing on large clusters.” HotCloud, vol. 12, pp.
10–10, 2012.

[14] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik, “High-availability algorithms
for distributed stream processing,” in Data Engineering, 2005.

ICDE 2005. Proceedings. 21st International Conference on.
IEEE, 2005, pp. 779–790.

[15] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al.,
“Storm@ twitter,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM,
2014, pp. 147–156.

[16] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of real-
time processing technologies of iot data streams,” Journal of
Information Processing, vol. 24, no. 2, pp. 195–202, 2016.

[17] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: a
real-time iot benchmark for distributed stream processing
platforms,” arXiv preprint arXiv:1701.08530, 2017.

[18] T. L. Saaty, “Decision making with the analytic hierarchy
process,” International journal of services sciences, vol. 1,
no. 1, pp. 83–98, 2008.

[19] R. Tönjes, P. Barnaghi, M. Ali, A. Mileo, M. Hauswirth,
F. Ganz, S. Ganea, B. Kjærgaard, D. Kuemper, S. Nechifor
et al., “Real time iot stream processing and large-scale data
analytics for smart city applications,” in poster session, Eu-
ropean Conference on Networks and Communications, 2014.

[20] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 Workshop
on Mobile Big Data. ACM, 2015, pp. 37–42.

[21] K. Aberer and M. Hauswirth, “Middleware support for the”
internet of things”,” 2006.


